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CHEMICAL REACTIONS, HEAT EXCHANGE AND FAST PARTICLES 

A~ A. Abramov and N. K. Makashev UDC 533.6.011 

We give results of a numerical and analytical study of the effect of the "tails '~ 
of the distribution function, i.e., the solution of the model Bkhatnagar--Gross-- 
Krook equation, on the rate of a high-threshold reaction and on the heat flux. 

It is known that many chemical reactions have a high energy barrier and take place in 
collisions of molecules whose velocities of motion are much larger than the average thermal 
velocity. The validity of the Chapman--Enskog solution of the Boltzmann equation which is 
the basis for the Euler equation, Navier--Stokes equation, etc., is limited by the conditions 
k=lo/L ~ i, mc 2 ~2~T (see, e.g., [I, 2]). Taking into account large energies of transla- 
tional motion of the particles requires that one gives up the familiar concepts about the 
properties of kinetic equations for k < 1. In particular, the molecular distribution func- 

1-s > 2, tion f of molecules which interact with potential Uij =~ijr , So/2 differs considerably 
from the Maxwell distribution fo, and is nonlocal for c ~ c* = CT k-pl , B = (s -- l)/(s +i). 
It is important to note for a further investigation that in the last estimate, the Knudsen 
number is determined from the scale of change of the gas parameters (e.g., its temperature) 
by a magnitude. 

Thus, one can expect that in spatially inhomogeneous flows, the rate constant of a high- 
threshold reaction will differ considerably from the equilibrium value [2]. In addition, 
the increase of k reduces the region in the space of molecular velocities where the differ- 
ence between f and fo is small, and where the Chapman--Enskog solution is valid. This in 
turn is reflected in the increase of the direct effect of the "tail" properties of the dis- 
tribution functions on the gas dynamics. 

The direct effect here means the effect of the deviation of f from the Chapman--Enskog 
solution on the reaction rate, heat flux, stress tensor, etc., which are calculated from f. 
We note that the effect can also be indirect. For example, because of the change in the 
description of the kinetics of high-threshold reactions, the solution will give different 
concentration fields of the components and, as a result, different values of the transfer 
coefficients. This phenomenon will not be considered here. In this work we use the example 
of heat exchange between two infinite parallel plates at temperature T1w and T2w > T~w in the 

TABLE I. Comparison of the Analytical and Numerical 
Solutions 

Vx 2,5 5,0 7,5 10 12,5 

x1~0,265 

k=0,0245 

1, ni l  iTI 

OO (+) l . a n  

0,882 

0,888 

0,364 

0,369 

0,142 

0,143 

0,0655 

0,0659 

0,0347 

0,0348 
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Fig. i Fig. 2 

Fig. i. Deviation of the Maxwell and Navier--Stokes distri- 
bution functions for k =0.0245: I) log F~/Fol; 2) log FI/ 
iF,Nsl; 3) ~o~/F1; 4) FzNS/V~ for x~ =0.265; 5) log F~/ro~; 
6) log F~/IFINSI for xl =0.171. 

Fig. 2. Nonlocal form of the distribution function for V x < 
O, k =0,0245: i) x~ =0.27~ 2) 0.71. 

situation when the heat-conduction coefficient k is proportional to T, to consider the fol- 
lowing problems: 

i) Properties of the distribution function (solution of the model Bkhatnagar--Gross-- 
Krook (BGK) equation) for large velocities of translational motion of the molecules. 

b) The effect of these properties on the Chapman--Enskog result for the rate of a high- 
threshold reaction and the heat flux. 

The choice of the heat-conduction problem for the BGK equation is made for two reasons: 
firstly, because of the simple formulation and availability of proven methods for the solu- 
tion. Second, the Chapman--Enskog result for the heat flux in the case of a planar heat flux 
in a molecular gas with k ~T contains only one Navier--Stokes term [3]. 

The model BGK equation is [4] 

of c~ - -  An  (fo - -  f), fo = n (m/2~•  3/2 exp ( - -  mcZ/2• 
Ox 

L 

Before the solution, we introduce dimensionless variables (f -3 I" =n,c T F, n,L =, ndx, c T = (2~Tlw/ 
0 

xl 

m) 1/2 ~ = n / n , ,  x = L x ~ ,  s = f rldz, e=CTV ) and a v e r a g e  o v e r  t h e  v e l o c i t y  componen t s  Vy and V z 
0 

with weights 1 and V~ = V~ + V~ (F I = J FdVi, F~ = ~FV2LdV• As a result, we obtain the equa- 
tions 

kV~ OF i _ F o ~ -  F~, Fo~ = "q'd ~i n -112 exp (-- V~/'[), (i) 
Os 

where  T =T/Tzw,  k = c T ( A n . L )  - 1 ,  a~ = - - 0 . 5 ,  a2 = 0 . 5 .  The c o o r d i n a t e  s =0  c o r r e s p o n d s  to  t h e  
plate with temperature T~W = i. 

The heat flux Q, density, and temperature can be expressed in terms of F i as follows: 

/71C 2 

Q --= J - - - - ~  c J d c  = n,• q j' 3 = (VxF 1 + VxF2) dVx, 

+~ 3 +~ 

The reflection of the molecules from the films will be assumed diffusive at the temper- 
ature of the surface. Equations (i) were solved numerically by the method developed in [5]. 
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Fig. 3. The effect of the deviation from the Maxwell 
distribution function on the chemical reaction rate: 
i) xl =0.36; 2) 0.17; k=0.0245. 

Fig. 4. The deviation from the Chapman--Enskog result 
for the heat flux: i) k =0.008; 2) 0.033; 3) 0.67. 

Properties of the Distribution Functions F i 

for Large Velocities of Molecules 

Assuming that k<<l and Vx=0 (i), outside the Knudsen layers one can construct an 
approximate solution of Eqs. (i) with error O(k =), 

F ~ = F ~ o - - k V x  OF~o @ . . . .  Fio 1 - - k V ~  v - a i - - t  . . . ~  (2) 
Ox ' ds [ ' 

which c o r r e s p o n d s  to  the  s o l u t i o n  o f  Eqs.  ( l )  by  the  Chapman--Enskog method i n  t h e  N a v i e r - -  
S t o ke s  a p p r o x i m a t i o n .  For  IVxl ~ k  - ~ / ~ ,  t h i s  s o l u t i o n  l o s e s  i t s  a c c u r a c y .  In  a d d i t i o n ,  f o r  
Vx =Vxo, l -~ ( k V ~ o / r i ) d T / d s  t h e  f u n c t i o n  F i ,  d e f i n e d  by e x p r e s s i o n s  (2 ) ,  changes  s i g n .  

A l l  t h i s  i n d i c a t e s  t h a t  t h e  r e g i o n  o f  v a l i d i t y  o f  (2) i s  l i m i t e d  to  v e l o c i t i e s  f o r  which 
kV x << ! [ l ,  2 ] .  1 However ,  f o r  a f i n i t e  t e m p e r a t u r e  d i f f e r e n c e  and n o t  too  s m a l l  k ,  t he  v e l o -  
c i t y  Vxo =Vxor -  / ( t h e  q u a n t i t y  v = c ( m / 2 ~ T )  / d e t e r m i n e s  t h e  c o n t r i b u t i o n  o f  m o l e c u l e s  
w i t h  v e l o c i t i e s  o f  o r d e r  c t o  t he  m a c r o s c o p i c  q u a n t i t i e s )  i s  n o t  v e r y  l a r g e .  For  k = 1 /30  
and r = w = 4  a t  a p o i n t  where  r = 2 . 5 ,  we have  Vxo = 2 . 7 .  T h e r e f o r e ,  f o r  an a c c u r a t e  d i s c u s s i o n  
o f  t h e  h e a t  exchange  i n  t h e s e  c o n d i t i o n s  i t  i s  in  g e n e r a l  n e c e s s a r y  to  r e f r a i n  f rom an uncon-  
d i t i o n a l  use of the solution (2). 

Using this remark we shall construct the solution of Eqs. (i) under the sole assumption 
that k is small. By writing F i in the form of a product Fi =Fio0i, we obtain for ~i the 
equation 

kI/~ c)COi , [d lnr l  , (~ ,2  ) d l n T ]  

whose solution will be written in the integral form 

C' Aido ~ 1 (' Aidz \ 
(I)I + ) =  ~ , m  exp ( - - J ~ )  q- ~ exp - -  j ld---7~.~) d~ V,: ~ O, (4) 

0 0 o 

s 

i AS,'/ 1 
O~ -)  = q)i~,_exp -- 0 k--~-~ / kVx exp O kVx ] 

l s S 

Outside the Knudsen layers, 

V,: < O~ 
(5) 

A~ = A; = I + kV~ (V~/t + a~ - -  1) d In 7:/ds + o . .  (6) 

Using (6)~ it follows from (4) that in the internal points of the flow, the influence 
of the "cold" surface on ~i (+) is exponentially small, and for ~i (+) we have the following 
expression which is valid uniformly for all V x >0" 

O~+) - 1 iV,: dA'~: kiVi, ( dA~ ~2 tezV~ dZA*~ (7) 
A[ ~- A .3  ds -1- 3 A ,  5 [ ds ] A .4  ds 2 ~ O(kD 
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It can be shown that this expression is nothing else but an expansion of ~i (+) in powers of 
k 2/3. A comparison of the solution, whose error is O(k ~/3) and which is given by the first 
two terms from the right in (7), with the numerical solution gives a good agreement (see Table 
i). The expansion of (7) for V x =0 (i) leads to the familiar Chapman--Enskog solution. 

The description of the functions ~i (-) is more difficult. To facilitate the discussion 
below, we note that outside the Knudsen layers and for sufficiently large magnitudes of the 
velocities V x <0 the quantity A~(s, Vx) falls with decreasing s. Therefore, in the velocity 
region Vxi (I) < V x < 0, where Vxi i~) = O(k-I/s) is determined from the condition Ai*(s , Vxi (I) 
(s)) =0, the functions @i(-)(s, V x) are local and are given by the expansions (7). In this 
region, A~(o, Vx) >0 for s~o. 

For Vx <Vxi (I), the functions ~i(-)(s, Vx) become nonlocal. The main contribution to 
the second term from the right in (5) comes here from the neighborhood of the point so, where 
Ai(so, V x) =0, s <So. In this case, using estimates by the saddle-point method, we find for 

~i (-) 
s0 , 

H~-'~ 1 exp ( (A; dz ]1/f  2kV=a 
�9 --  kV~ \ J  kVz JV A;o' > 1, A;; = [dA;]  , k ds / . . . .  (8)  

s 

and hence we have for Fi(-) 

/ 
F (-) 

4~ 
~s V~)=F~o(So, Vx) | /  

~ " L ,  A~o'kV~ 
exp ( S o - - S  ]>>F/o(S, V~:). 

kV~ / 

The region of applicability of (8) in the molecular velocity space is bounded by the 

v e l o c i t y  Vxi (2) f o r  which t h e  maximum of  the  f u n c t i o n  Wi(~ ) = - - S  Aidz c o i n c i d e s  w i t h  ~ = 1. 
s 

For Vx <Vxi(2)(s), we obtain from (5) 

1 

H~ -) (s, V~) : (Hiw~ q- Hi) exp (S A~d~/kVx) > 1, 
$ 

I i 

where H i = - ( l / k V x )  j' exp (-- S A i d z / k V x ) d ~  > 0 and H i m l .  A s i m p l i f i c a t i o n  of  H i i s  h i n d e r e d  
S O 

by a l o g a r i t h m i c  s i n g u l a r i t y  of  Ai f o r  s + 1 .  

The form of  F1 i s  shown in  F ig .  i on t he  example of  a c a l c u l a t i o n  of  the  d i s t r i b u t i o n  
f u n c t i o n  of  m o l e c u l a r  v e l o e i t i e s  a t  s e v e r a l  p o i n t s  be tween the  p l a t e s .  We n o t e  the  sharp  
i n c r e a s e  of  ~1( - )  w i t h  i n c r e a s i n g  a b s o l u t e  v a l u e  o f  t he  v e l o c i t y ,  and a s u f f i c i e n t l y  f a s t  
d e c r e a s e  o f  #1(+) w i t h  i n c r e a s i n g  v x.  I t  i s  c l e a r  t h a t  t h i s  a g r e e s  w i t h  e x p r e s s i o n s  (7) and 
(8) .  I t  i s  s i g n i f i c a n t  t h a t ,  i n  c o n t r a s t  w i t h  the  Chapman--Enskog s o l u t i o n ,  ~1(+) i s  h e r e  
a lways  p o s i t i v e .  

The nonlocal form of ~i (-) and local form of ~I(+) at large absolute values of V x are 
shown in Fig. 2 by a comparison of the theoretical data on the distribution function for dif- 
fusely reflecting plates (unperturbed solution), and also when the distribution function of 
molecules reflected from the surface has the form 

fwper = nr (m/2n• a/2 exp (-- mc~2• { 1 q- 5Z [(Vx - -  Vw) sgn VJ}, 

where X(Z) is the Heaviside function equal to zero for z <0, and to unity for z ~0. The 
quantity n~ is found from the condition of no throuzh flow. For the reasons of nonlocality 
for V~k -I/3 when the range ~(V) =loV~ok -I/s ~Lk273<<L, see [I, 2]. 

Contribution of the Deviation from the Chapman--Enskog 

Solution to Macroscopic Quantities 

The effect of the strong perturbation of fo for V>>I on the kinetics of high-threshold 
reactions in the present case is shown in Fig. 3, which gives the results of the calculation 
of the ratio R of the true rate of the model reaction to the local equilibrium value 

t? = ~ f ~f ~gndaf 2 dq  dc2[ f f ~of 2og~2daf 2dcxdcJ-t 
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R 
Here g12dq~= =x(gla,x -- go)Uobdb, g,2 =el -- c2 is the relative velocity; X, Heaviside step 
function; b, impact parameter of the collision, b <bo =const~ and Uo, characteristic velocity. 
The functions f~(cl) and f2(c=) used here were the solutions of the model equation construc- 
ted earlier, This is possible if the chemical reaction has no effect on the form of f for 
c>go/2 because of the smallness of the inelastic collision cross section. The increase of 
R for large values of the ratio go/c T =go(m/2~T) I/2 can be explained by the large magnitude 
of ~i for negative values Vx, Ivxl>> I. 

The equation of the BGK model is considerably simpler than the Boltzmann equation. The 
properties of f for V >i and their implications are, therefore, studied more easily by using 
the model equation. However, these solutions cannot be used a priori to obtain exact results 
on the perturbation of the equilibrium kinetics of high-threshold reactions in spatially non- 
uniform flow, but only for qualitative estimates. This is because the true distribution func- 
tion (the solution of the Boltzman equation) is considerably distorted at high velocities of 
molecules. This fact was clarified in the study of the effect of the tail properties of f 
on the heat exchange. 

It was noted above that the Chapman--Enskog expression for the heat flux in the case of 
planar heat exchange in a gas with % % T contains only one Navier--Stokes term (--IdT/dx) [3]. 
Figure 4 shows the results of the calculation of the ratio (--%dT/dx)/Q, where X =2.5~2T/Am 
is the thermal conductivity for the BGK model, and the gas temperature in ~ and dT/dx is 
obtained by a numerical solution of Eqs. (i) for T2w =4. 

It is seen from the data that the deviation from the Navier--Stokes (or Chapman--Enskog) 
results for the heat flux is due here mainly to the properties of the flow in the Knudsen 
layers near the plates, rather than to a deviation from the Chapman--Enskog solution for f 
outside the Knudsen layers. Indeed, in this case the deviation of (--%dT/dx)/Q from unity 
would be larger near the cold plate because of the large values of the local temperature 
gradient. A possible explanation is given below. 

The fact that the BGK model equation for f(x, c) does not contain molecular velocities 
of directions other than c (which makes it possible to reduce the original equation to closed 
equations for the function Fi(x, Cx)) is, unfortunately, the reason for the strong distortion 
of the properties of the true distribution function at large molecular velocities. Indeed, 
this property of the BGK model leads to the fact that in the present one-dimensional formula- 
tion, the quantity V. (the "limit" of large deviation from fo) is given by the condition 

L~ (V,) = L/V~ ~ l~ (V,) = 4V, cos O, (9) 

where Lx(V) is the scale of the variation of fo in the direction of x for c ~CTV , and ~ is 
the angle between c and the x axis. It follows from (9) that V. depends appreciably on the 
direction of c 

V,~k-1 /Scos - I /aO.  (10) 

When using the Boltzmann equation, the perturbation which occurs in some direction e 
is transferred to the whole spectrum of directions of motion of the molecules. As a result, 
an estimate for V. loses the angular dependence, and the region in the velocity space where 
the difference between f and fo is small reduces considerably, particularly for finite angles 
between e and the x axis. This increases the effect of a strong perturbation of fo for V>>I 
on the heat flux (since the main contribution to Q comes from particles with these directions 
of motion). 

We estimate the reduced effect of the tails on Q when the Boltzmann equation is geplaced 
by the BGK model. According to [i, 2], in the case of Boltzmann equation for V. %k -I/3, the 
effect of tails on Q is determined by the estimate 6Q %p~.cTk-a/Sexp (--k -2/3), p. =n.~T~a 

d �9 ~ 3 Accor ing to (i0) or because q =0/p.c T= I(VxFI +VxF2)dVx, ~or the BGK model 6QM%p.cTk- / 
exp (--k-2/3), which is only 0(k =/3) of 6Q. 

At the same time, an asymptotic estimate of the contribution of the distribution func- 
tion at the cold plate to Q gives, for s>>k, the expression 

i ( ] ~ ] r l p * c T s (  3Sg/S ) ~3Qw 1 N nrlZTlwCr V a exp - -  V~ s dV x ~,, - = exp 22/a kS/a . 
V - ~  * v~ - 2 V a  k 

0 
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Hence it follows that the effect of the edge of the flow field on the heat flux is in the 
present case larger than the effect of the tails of the distribution function. This is also 
confirmed by the character of the change of the ratio (--%dT/dx)/Q near the cold plate. The 
presence of ~Qwl lead to an effective increase of the thermal conductivity of gas, and to a 
local increase of the temperature gradient near the wall. 

We note that, in general, a more complex geometry (e.g., cylindrical) rather than planar 
does not remove this property of the BGK model. The limit (i0) is exceeded here only for 

~-~ 1 4 --i 2 �9 �9 velocities of molecules which satisfy the inequality V> V** =r / k / , where r is the dls- 
tance from the axis of the coaxial cylinders divided by L. The velocity V** is comparable 
with k -~/3 for r ~k z/3. In other words, in order to estimate the realistic effect of the 
tails of the distribution function on the heat exchange using the BGK model, it is necessary 
to consider, for example, the heat exchange between coaxial cylinders when the radius of the 
smaller cylinder does not exceed loZ/3L1/3 of the range at velocity V ~k ~I/3. However, the 
heat transfer phenomenon is here more complex on account of a number of factors which have 
no relation to the problem in hand. Therefore, the analysis of the effect of the tails of 
the distribution function on the heat exchange should therefore be carried out using the 
solution of the exact Boltzmann equation, and the model BGK equations should be used only 
for the estimate of the contribution of the perturbation of fo for V>>I to the kinetics of 
the high-threshold reactions. 

NOTATION 

Here c T is the characteristic thermal velocity of molecules; m, their mass; 4, Boltzmann 
constant~ n,, average numerical density of the molecules; Zo = CT/An,, mean free path of the 
molecules~ L, separation between plates~ and k = lo/L, Knudsen number. 
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